No Brain Too Small
 AQUEOUS CHEMISTRY

Sparingly soluble ionic solids

$A B$ and $A B_{2} / A_{2} B$ type
Equation for equilibrium occurring in a saturated solution: $\mathrm{PbCO}_{3} \rightleftharpoons \mathrm{~Pb}^{2+}+\mathrm{CO}_{3}^{2-} \mathrm{K}_{\mathrm{s}}$ expression: $\mathrm{K}_{\mathrm{s}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]$
$\mathrm{AB}: K_{s}=s^{2} s=\sqrt{K_{s}} \quad \mathrm{AB} / \mathrm{A}_{2} \mathrm{~B}: K_{\mathrm{s}}=4 \mathrm{~s}^{3} \mathrm{~s}=\sqrt[3]{\frac{K s}{4}}$
s in $\mathrm{mol} \mathrm{L}^{-1}$

Solubility DECREASES in solutions containing one of the ions A^{2+} or B^{2-} (common ion); $\mathrm{AB}(\mathrm{s}) \rightleftharpoons \mathrm{A}^{2+}(\mathrm{aq})+\mathrm{B}^{2-}(\mathrm{aq})$. An increase in either favours the back reaction to USE up the extra ion, making more solid, so solubility decreases.

Solubility INCREASES due to:

(1) Complex ion

$\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ $\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$ Formation of complex ion favours forward reaction of eqm. to REPLACE used up Ag^{+}, making less solid, hence solubility increases.

$\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$	$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
$\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
$\left[\mathrm{Pb}(\mathrm{OH})_{4}\right]^{2-}$	$\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$
$\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$	

(2) Reaction of basic anion (OH^{-}or $\mathrm{CO}_{3}{ }^{2-}$) with added acid.

$\mathrm{PbCO}_{3} \rightleftharpoons \mathrm{~Pb}^{2+}+\mathrm{CO}_{3}^{2-} \quad \mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
The $\mathrm{CO}_{3}{ }^{2-}$ ion reacts with added acid. Removal of $\mathrm{CO}_{3}{ }^{2-}$ favours forward reaction of equilibrium to REPLACE used up $\mathrm{CO}_{3}{ }^{2-}$ making less solid, hence solubility increases.
$\mathrm{Zn}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Zn}^{2+}+2 \mathrm{OH}^{-} \quad \mathrm{OH}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
The OH^{-}ion reacts with added acid. Removal of OH^{-}ion favours forward reaction to REPLACE used up OH^{-}, making less solid, hence solubility increases.
Watch out for @ low pH i.e. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is high, or at high pH i.e. [OH^{-}] is high. Excess "...." normally suggests complex ion is formed.

Predicting precipitation

When mixing volumes take into account the dilution factor. e.g. 20.0 mL of $2.50 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$, is mixed with 35.0 mL of $6.50 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}(\mathrm{aq})$.

Determine whether a precipitate of calcium hydroxide,
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$, forms. $K_{\mathrm{s}}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=6.40 \times 10^{-6}$
$\mathrm{Q}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} \mathrm{Q}=\left(20 / 55 \times 2.50 \times 10^{-2}\right) \times\left(35 / 55 \times 6.50 \times 10^{-2}\right)^{2}$ If $Q>K_{s}$ ppt forms, if $Q=K_{s}$ saturated solution forms, if $Q<$ K_{s} no ppt forms

$\begin{aligned} & \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\ & K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C} \\ & \mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}} \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \end{aligned}$			Titration curves: A titration curve is the plot of the pH versus volume as the titration progresses. The equivalence point is reached when the moles of acid and base are equal. pH range of indicator is its $\mathrm{pKa} \pm 1 \mathrm{pH}$ unit. Indicator needs to change colour in the VERTICAL region of titration curve, as close to pH at equivalence point as possible to get the correct volume of titrant (stuff added from burette) needed for equivalence point.			Titration curve for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ with NaOH
	Buffer solutio	Weak base / basic sat				
						(between 7-25 is a good choice.
solution of NH_{4} containing $\mathrm{NH}_{4}{ }^{+}$	pK_{a}		r a solution ONa $\mathrm{g} \mathrm{CH}_{3} \mathrm{COO}^{-}$			added, calculate as a WA. Halfway to EP -
Rearrange as needed e.g. $[\mathrm{HA}]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{K_{\mathrm{a}}}$	buffer contains more acid than base. Better at 'absorbing' base than acid. (And vice versa)		$\begin{aligned} & p K_{a} \times K_{b}=K_{w} \\ & p K_{a}+p K_{b} \end{aligned}$			[acid]=[base] and pH = pKa (3) EP - all WA has been converted to its conjugate WB. Do a WB calculation. (4) Past EP - calculate as
Electrical conductivity depends on mobile charge carriers. In aqueous solutions it depends on the concentration of ions. SA and SB and ALL salts are all GOOD conductors as their ionisation / dissociation is complete. WA and WB are POOR conductors as their reaction with $\mathrm{H}_{2} \mathrm{O}$ is incomplete and so [ions] is low. $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-}$ pH depends on the extent of the reaction with water. For a weak acid, lower K_{a} / higher $\mathrm{p} K_{\mathrm{a}}$ means a weaker acid. So if there are two weak acids of the same concentration, the one with lower $K_{a} /$ higher $\mathrm{p} K_{a}$ will have the higher pH as it will be less dissociated. so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$will be less, hence pH will be higher.						
					$\begin{aligned} & \text { Species in solution } \mathrm{HCOOH}+\mathrm{NaOH} \rightarrow \mathrm{HCOONa}+\mathrm{H}_{2} \mathrm{O} \\ & \boldsymbol{1}[\mathrm{HCOOH}]>[\mathrm{HCOO}]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right] \\ & \boldsymbol{3}\left[\mathrm{Na}^{+}\right] \approx\left[\mathrm{HCOO}^{-}\right]>[\mathrm{HCOOH}]=\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \end{aligned}$	
					Weak acid and Strong base	Weak base and Strong acid
Buffers: solutions that resist change in pH when small amounts of acid and base are added. Contain a weak acid and its conjugate base e.g. $\mathrm{CH}_{3} \mathrm{COOH} \& \mathrm{CH}_{3} \mathrm{COO}^{-}$OR a weak base and its conjugate acid e.g. $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$. - Buffer range is $\mathrm{p} K_{a} \pm 1 \mathrm{pH}$ unit. Outside a 10 x or $1 / 10 \mathrm{x}$ they are not effective. The closer the pH is to the $\mathrm{p} K_{\mathrm{a}}$ the more effective the buffer. - Are most effective when concentrated AND [acid] \approx [base]						

- Buffers do not change pH if diluted as ratio [acid] : [base] is unaltered BUT the buffering ability (or capacity) is reduced as the mol (acid) and mol (base) are less. A concentrated buffer can neutralise more added acid or base than a dilute one.
- $\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-}$. pH doesn't rise much as OH^{-}is turned to neutral $\mathrm{H}_{2} \mathrm{O}$
- $\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}$. pH doesn't drop much as $\mathrm{H}_{3} \mathrm{O}^{+}$is turned to neutral $\mathrm{H}_{2} \mathrm{O}$
- $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}$ or $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\text { mol (base) }}{\operatorname{mol}(\text { acid })}$
or ratio e.g. NH_{3} and $\mathrm{NH}_{4}{ }^{+}$in a 5:1 ratio $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{5}{1}$
- If dissolving x g of $\mathrm{CH}_{3} \mathrm{COONa}$ in 400 mL of $0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CH}_{3} \mathrm{COOH}$, calculate (1)
$n\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ using $\mathrm{n}=\mathrm{m} / \mathrm{M}(2) \mathrm{c}\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ using $\mathrm{c}=\mathrm{n} / \mathrm{V}(3)$ substitute in buffer equation.

pH at EP (for WA-SB)

(1) Calculate n (base) formed using $n=c V$ of the starting weak acid. (2) Calculate the total volume at EP. (3) Determine [base] using $c=n / V$. (4) Solve for $p H$ using equation for WB.

pH after EP (for WA-SB)

(1) Calculate how many "extra" mL of unreacted base you are adding. (2) Calculate n (base) using $n=c V$, where V is the "extra" mL . (3) Calculate [base] using $\mathrm{c}=\mathrm{n} / \mathrm{V}$, where V is total volume. (4) Calculate pH for a strong base using $\left[\mathrm{OH}^{-}\right]$.

